ADM-CLE approach for detecting slow variables in continuous time Markov chains and dynamic data

نویسندگان

  • Mihai Cucuringu
  • Radek Erban
چکیده

A method for detecting intrinsic slow variables in high-dimensional stochastic chemical reaction networks is developed and analyzed. It combines anisotropic diffusion maps (ADM) with approximations based on the chemical Langevin equation (CLE). The resulting approach, called ADM-CLE, has the potential of being more efficient than the ADM method for a large class of chemical reaction systems, because it replaces the computationally most expensive step of ADM (running local short bursts of simulations) by using an approximation based on the CLE. The ADM-CLE approach can be used to estimate the stationary distribution of the detected slow variable, without any a-priori knowledge of it. If the conditional distribution of the fast variables can be obtained analytically, then the resulting ADM-CLE approach does not make any use of Monte Carlo simulations to estimate the distributions of both slow and fast variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry

We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

A Model For The Residence Time Distribution and Holdup Measurement in a Two Impinging Streams Cyclone Reactor/Contactor in Solid-Liquid Systems

In this paper a two impinging streams cyclone contacting system suitable for handling of solid-liquid systems has been studied. Certain pertinent parameters such as: solid holdup, mean residence time and Residence Time Distribution (RTD) of solid particles have been investigated. A stochastic model based on Markov chains processes has been applied which describe the behavior of solid partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2017